python - Splitting numpy arrays based on categorical variable -


i'm trying split ages , weights based on categorical variable "obese" , plot 2 sets different colors. think might doing list comprehension wrong. when plot see 1 color , data points.

import numpy np  import matplotlib.pyplot plt ages = np.array([20, 22, 23, 25, 27]) weights = np.array([140, 144, 150, 156, 160]) obese = np.array([0, 0, 0, 1, 1])  ages_normal = [ages in range(0, len(obese)) if obese[i] == 0] weights_normal = [weights in range(0, len(obese)) if obese[i] == 0]  ages_obese = [ages in range(0, len(obese)) if obese[i] == 1] weights_obese = [weights in range(0, len(obese)) if obese[i] == 1]  plt.scatter(ages_normal, weights_normal, color = "b") plt.scatter(ages_obese, weights_obese, color = "r") plt.show() 

i'd like:

import numpy np import matplotlib.pyplot plt ages = np.array([20, 22, 23, 25, 27]) weights = np.array([140, 144, 150, 156, 160]) obese = np.array([0, 0, 0, 1, 1])  data = zip(ages, weights, obese)  data_normal = np.array([(a,w) (a,w,o) in data if o == 0]) data_obese  = np.array([(a,w) (a,w,o) in data if o == 1])  plt.scatter(data_normal[:,0], data_normal[:,1], color = "b") plt.scatter(data_obese[:,0],  data_obese[:,1], color = "r")  plt.show() 

but might more efficient:

data = np.array(np.vstack([ages, weights, obese])).t  ind_n = np.where(data[:,2] == 0) ind_o = np.where(data[:,2] == 1)  plt.scatter(data[ind_n,0], data[ind_n,1], color = "b") plt.scatter(data[ind_o,0], data[ind_o,1], color = "r") 

but correct, list comprehensions bit off, maybe wanted like:

ages_normal = [ages[i] in range(0, len(obese)) if obese[i] == 0] weights_normal = [weights[i] in range(0, len(obese)) if obese[i] == 0]  ages_obese = [ages[i] in range(0, len(obese)) if obese[i] == 1] weights_obese = [weights[i] in range(0, len(obese)) if obese[i] == 1] 

the difference added indexing on ages/weights.

all 3 approachs generates graph you're looking for.


Comments

Popular posts from this blog

java - Could not locate OpenAL library -

c++ - Delete matches in OpenCV (Keypoints and descriptors) -

sorting - opencl Bitonic sort with 64 bits keys -